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When a curved pipe rotates about the centre of curvature, the fluid flowing in it 
is subjected to both Coriolis and centrifugal forces. Based on the analogy between 
laminar flows in stationary curved pipes and in orthogonally rotating pipes, the flow 
characteristics of fully developed laminar flow in rotating curved pipes are made clear 
and definite by similarity arguments, computational studies and using experimental 
data. Similarity arguments clarify that the flow characteristics in loosely coiled 
rotating pipes are governed by three parameters: the Dean number KLC, a body force 
ratio F and the Rossby number Ro. As the effect of Ro is negligible when Ro is 
large, computational results are presented for this case first, and then the effect of 
Ro is studied. Flow structure and friction factor are studied in detail. Variations of 
flow structure show secondary flow reversal at F w -1, where the two body forces 
are of the same order but in opposite directions. It is also shown how the Taylor- 
Proudman effect dominates the flow structure when Ro is small. Computed curves 
of the friction factor for constant Dean number have their minimum at F w -1. A 
composite parameter K L  is introduced as a convenient governing parameter and used 
to correlate the characteristics. By applying K L  to the analogy formula previously 
derived for two limiting flows, a semi-empirical formula for the friction factor is 
presented, which shows good agreement with the experimental data for a wide range 
of the parameters. 

1. Introduction 
A quantitative analogy between flows in stationary curved pipes and orthogonally 

rotating straight pipes has been reported in previous papers (Ishigaki 1994, 1996a). 
Taking this analogy as a basis, this paper describes the characteristics of more 
general and complicated flow in rotating curved pipes, which are relevant to systems 
involving helically or spirally coiled pipes rotating about the coil axis. Such rotating 
flow passages are used in cooling systems in rotating machinery such as gas turbines, 
electric generators and electric motors. The flow systems are also encountered in 
separation processes. 

When a viscous fluid flows in a coiled pipe rotating at a constant angular velocity 
about the coil axis, two kinds of secondary flow occur perpendicular to the primary 
axial flow. One is caused by a centrifugal force due to the curvature of the pipe, the 
other by a Coriolis force due to the rotation of the pipe. When rotation is in the same 
direction as the axial flow (positive rotation), the directions of the two secondary 
flows are the same, and the flow structure remains qualitatively the same as that 
observed in stationary curved pipes. When rotation is against the axial flow (negative 
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rotation), the secondary flows are in opposite directions, and particularly complex 
behaviour can be observed when the magnitudes of the forces are of the same order. 

There have been various studies on rotating curved duct flows since the initial 
work of Ludwieg (1951), who analysed and performed experiments on the flow in 
a rotating curved duct of square cross-section. Miyazaki (1971, 1973) analysed the 
laminar boundary layer flow and heat transfer in rotating curved pipes of circular and 
rectangular cross-sections for the case of positive rotation. Ito & Motai (1974) first 
analysed the flow in a curved pipe with negative rotation, and showed the reversal 
of the direction of the secondary flow. These analyses were based on boundary layer 
approximations. 

The flow structure in an inviscid core is so complicated and the interactions with 
the wall boundary layer are so strong in rotating curved pipe flows that the flow 
phenomena have to be analysed with the Navier-Stokes equations. In this way, Ito 
et al. (1987, 1988) made finite-difference computations, together with experiments on 
the friction factor, for the flow in rotating curved pipes for the cases of constant 
Dean number and of constant rotational Reynolds number. Their computations 
were, however, limited to relatively small values of the parameters. Computation 
using orthogonal collocation was done by Daskopoulos & Lenhoff (1990), who paid 
particular attention to the bifurcation structure of the flow. A bifurcation study 
was also made by Selmi, Nandakumar & Finlay (1994) for the flow in square ducts. 
Flow instabilities in rotating curved channels without secondary flow were studied by 
Matsson & Alfredsson (1990, 1994) and Matsson (1993). 

The pressure loss of the flow is the most important subject in engineering. Mea- 
surements on the friction factor were conducted by Euteneur & Piesche (1978) and 
Ito et al. (1987, 1988) for circular pipes, and by Ludwieg (1951), Piesche & Felsch 
(1980), and Piesche (1982) for rectangular ducts. These studies confirmed that the 
pressure drop is significantly higher than that for non-rotating straight pipes. No 
experimental data on other flow properties seems to be available. 

As the flow is more complex than that with no or one body force, considerations of 
dynamical similarity are essential as guidance. However, there have been no similarity 
arguments on the flow in rotating curved pipes. In the above mentioned studies, 
parameters were adopted quite arbitrarily. Some works used the Reynolds number 
Re = w,d/v to describe the flow characteristics, where w, denotes the average flow 
velocity through the pipe, d the diameter of the pipe and v the fluid kinematic 
viscosity. However, Re includes no effect of curvature or rotation. Ito et al. (1987, 
1988) used two parameters: the Dean number KLC = Re/I ' /2 and the rotational 
Reynolds number RQ = Qd2/v, where 1 = R/d is the curvature parameter, R the 
mean radius of curvature and i2 the angular velocity of rotation. Daskopoulos & 
Lenhoff (1990) also used two parameters: the Dean number based on the pressure 
gradient and a parameter they called the Taylor number T a  = dRQ/(vI'/2). In 
the dimensionless governing equations of these studies, I oddly appeared as a third 
parameter in spite of their loose coil assumption. One of the main objectives of this 
paper is to make the dynamical similarity and governing parameters of the flow clear 
and definite. 

The flow in rotating curved pipes has two limiting situations: flow in a stationary 
curved pipe without the rotation effect and flow in an orthogonally rotating straight 
pipe without the curvature effect. The dynamical similarity of steady laminar flow 
in non-rotating curved pipes depends on the Dean number KLC and the curva- 
ture parameter I ,  while that of rotating straight pipe flow depends on a parameter 
KLR = Re//Ro11/2 and the Rossby number Ro = w,/Qd (Ishigaki 1994). Accord- 
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FIGURE 1. Configuration of rotating curved pipe flow. 

ingly, the general flow situation in rotating curved pipes will be governed by four 
parameters: KLc,  A, K L R  and Ro. The beneficial property of the combination of these 
parameters is that, when L or Ro is large, the flow characteristics are independent of 
it respectively. 

It was revealed in the previous paper (Ishigaki 1994) that, when both of L and 
Ro are large enough for these effects to be negligible, there is a quantitative analogy 
between these two limiting flows when KLc = KLR.  The friction factors of the two 
flows coincide and flow patterns, as well as flow properties, show strong similarities. 
Taking this analogy into consideration, analysis will be made first for the case when 
both Ro and L are large. 

When Ro is small in rotating fluid, the Taylor-Proudman effect may generally 
appear, where fluid motions tend to be invariant along a direction parallel to the 
rotation axis (Greenspan 1968; Hopfinger 1994). It will be shown how the phenomena 
affect the flow characteristics in rotating curved pipes. 

Two important aspects of the flow will be studied in detail: flow structure and 
friction factor. Flow structure will be discussed systematically for a wide range of 
parameters. Computed results of the friction factor will be compared with extensive 
experimental data by Ito et al. (1987, 1988). Through the correlation of friction factor, 
a convenient governing parameter for the laminar flow in rotating curved pipes will 
be introduced. A semi-empirical formula for friction factor will be given for large-Ro 
flow and then this will be extended to include the effect of the Rossby number. 

2. Governing equations and computational method 
The toroidal coordinates ( r ,  8,4) fixed to a rotating curved pipe are used, as shown 

in figure 1. The pipe rotates about the y’-axis at a constant angular velocity 0. 
Positive rotation is when 0 > 0, meaning that the rotation is in the same direction 
as the main flow in the pipe. Negative rotation is when Q < 0. The velocities in 
the directions of ( r ,  6 ,  4)  are denoted by (u,  v,  w). It is assumed that the flow is 
incompressible, steady, laminar and fully developed. As the radius of curvature of 
the curved pipe is much larger than the pipe radius in most of the applications, we 
introduce a ‘loose coil approximation’ where L is large enough for the flow properties 
to be independent of A. Rewritten in terms of z = R4, the equations of continuity 
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and momentum are as follows: 

a u  v au v2 1 ap* w2cose 
ar  rat3 r p ar R 

u p +  +- +20wc0sB+v ( v u - - - q  r2ae , (2.2) 

av av uv 1 ap* w2sin8 
ar  r a e  r pr ae R ( r2 r2ae 

u p + - - +  ~- 2Qw sine + v V2v - + z.1) , (2.3) 

aw v a w  lap* 2 

ar r ae p a Z  
U- + - - = - - - - 2Q(u cos 8 - v sin 0) + VV w , 

where the Laplacian operator is 

and p' is the reduced pressure defined by 

p* = p - i pQ2(R  + r cos t3)2 . (2.6) 
As u,v and w are independent of z in the fully developed region, it follows that 

where C is a positive constant. The boundary conditions for the velocity u, u and w 
are no-slip conditions on the wall of the pipe: 

u = v = w = O  at r = d / 2 .  (2.8) 
As all the trial computations on the whole cross-section gave symmetric solutions, we 
impose symmetry condition along the x-axis: 

au a w  
ae ae = O  and u = O  at O = O ,  n .  - --- 

From the viewpoint of computational fluid dynamics, this flow is parabolic. The 
conditions for a flow to be parabolic are the existence of a predominant flow direction, 
negligible diffusion in that direction and negligible pressure variation in the cross- 
stream direction (Patankar 1980). Compared to an elliptic flow, parabolic flow can 
be computed with little numerical (false) diffusion. Therefore, accurate computation 
is possible with moderate grid density and with a modest difference scheme. 

The numerical scheme employed to solve equations (2.1)-(2.4) is based on the 
well-established finite-volume approach (Patankar 1980). The main features of this 
method include a staggered mesh system, a power-law formulation for the combined 
convection-diffusion influence, and the well-known SIMPLE procedure for velocity- 
pressure linkage. The computational code is essentially the same as that used in 
the previous papers, and its reliability has been confirmed through the various 
comparisons of the computed results with reliable experimental data. 

The grid density employed is 42 in the r-direction and 37 in the &direction. The 
grid spacing is almost uniform in the @-direction, while the grid lines are more closely 
spaced near the wall than near the centre in the r-direction. The grid independence of 
the 42 x 37 grid computation was confirmed by repeating calculations with finer and 
coarser grids. A convergence criterion was specified with all the normalized residual 
errors for u, v, w and mass to be less than 
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3. Similarity consideration 
To elucidate the flow characteristics, it is essential to know the dynamical similarity 

of the flow and to use physically appropriate parameters to represent computational 
or experimental results. However, there has been no such discussion in the past for 
the flow in rotating curved pipes, and arbitrary parameters were derived by scaling 
with little physical significance. For example, some authors derived parameters by 
scaling the cross-sectional velocities u, u by v/d (for example, Ito et al. 1987, 1988; 
Daskopoulos & Lenhoff 1990). Although the viscous velocity, v/d, is the velocity scale 
for laminar flow without secondary flow in stationary straight pipes, it no longer is 
the velocity scale once secondary flow occurs. It contains neither the curvature effect 
nor the rotation effect which cause secondary flows. Correct governing parameters 
can only be obtained by scaling u, v by a velocity scale for secondary flow. 

We can take either of the two limiting flows as a reference. If we take the curved 
pipe flow, the velocity scale of the secondary flow, U S ,  is obtained from the balance 
between inertia and centrifugal forces as 

us = wm/1"2 . (3.1) 

The cross-sectional quantities u,u and p* are scaled by Us, the axial quantity w by 
the axial velocity scale wm. Thus the scaled variables are as follows: 

The dimensionless governing equations are then given by 

a av" 
-(fa) + - = 0 ,  ar" ae 

aa v"aa c2 ap; L + ; - - - ~  =---+$ 
ar r a e  r ar" 
av" v"a5 av" 1 a$ 

g- + - - + - = -- ~ - a* sin 8 - 2 ~ a  sin 8 + ~ ar" r"ae r" r" ae K L C  

a 6  a a 6  - 2 1 -  
ar" r"ae Ro K L C  

a-+-- = ~ - - ( ~ c o s e - a s i n 8 ) + ~ ~ ~ \ . 1 1 ,  

(3.3) 

where 

It can be seen from the above equations that, even when the effect of 1 is negligible, 
laminar flows in rotating curved pipes are characterized by three parameters: the 
Dean number KLc, a body force ratio F = 1/Ro and the Rossby number Ro. If 
we take the rotating pipe flow as reference, US = Wm/IRo("2 and KLR appears 
instead of KLC together with F-' and Ro in the flow equations. The meaning of 
the Dean number KLC is the square root of the product of (inertia force/viscous 
force) and (centrifugal force/viscous force). The parameter K L R  is obtained by 
replacing the centrifugal force in KLC with the Coriolis force. We see that KLC 
appears as an inverse coefficient of the diffusion terms, just like Re in standard 
dimensionless equations for flow without body force. Actually KLC or KLR is the 
Reynolds number in the cross-section, Usd/v .  Thus the flow may conveniently be 



378 H. Ishigaki 

classified as viscous or boundary layer flow depending on whether KLc is small or 
large. 

The body force ratio F = I / R o  is a new parameter, which represents the ratio of 
the Coriolis force to the centrifugal force. Negative values of F means D < 0, while 
F = -1 indicates that the two forces are of the same magnitude but in opposite 
directions. As the magnitude of F is equal to ( K L R / K L C ) 2 ,  the change of F with 
keeping KLC constant is equivalent to the change of KLR. 

The Rossby number Ro represents the ratio of the inertia force to the Coriolis 
force. When Ro is large enough, the effect of Ro disappears from the flow system. 
The curvature parameter 2 is the ratio of the inertia force to centrifugal force. The 
condition that both of 1, and Ro are large enough is the condition where the analogy 
between two limiting flows is valid. When Ro is so small in magnitude that the 
Coriolis force dominates the axial flow field, a different flow configuration appears: 
the contours of axial velocity are almost parallel to the axis of rotation in the inviscid 
core and the location of maximum axial velocity is on the y-axis. It is a characteristic 
of the Taylor-Proudman effect where the fluid motion tends to be two-dimensional. 

Here we note the another definition of the Dean number based on pressure gradient, 
D = Cd3/(pv1,1/2), where C is given in (2.7) and ,u is the viscosity. For fully developed 
flow in stationary curved pipes, using KLc or D makes little difference in theoretical 
studies, although D is difficult or impossible to use in experimental works and in 
developing flows. In rotating curved pipe flow, however, we have to note that C 
depends on effects of both curvature and rotation, which reflect on the physical 
meaning of D. Therefore, D is not independent of a rotation parameter. This seems 
to be a distinct shortcoming of using D for the flow in rotating curved pipes. 

4. Results and discussion 
4.1. Flow structure 

Computed flow structures for large Rossby numbers will be shown and discussed first. 
Curved conditions (KLc and 2) will be kept constant, while the rotating condition 
(Ro, thus F )  will be changed successively while keeping lRol > 8. Examples will be 
given for two values of the Dean number, KLc = 100 and 500. Dotted lines show 
negative streamfunctions in the contours. 

Figure 2 shows computed contours of dimensionless axial velocity and secondary 
streamlines for the moderate value of KLC = 100. For F = 1, where both the 
centrifugal and the Coriolis forces act radially outwards, two secondary flows in the 
same direction are superimposed and the resultant flow is intensified. Flow structures 
are then similar to those of a larger KLC flow in stationary curved pipes. When F = 0 
(no rotation), only the secondary flow due to the centrifugal force exists. 

In the case of negative rotation, two forces act in opposite directions and two 
counter-rotating vortices can coexist when the strengths of two vortices are of the 
same magnitude. When F = -1.10, a secondary flow due to the Coriolis force emerges 
along the inner wall of the curved pipe. As the secondary flow is in the opposite 
direction to that due to the centrifugal force, it weakens the effect of the latter on 
the axial flow. A boomerang-shaped pattern, which characterizes the w-contour at 
F = 1.0 and 0, now disappears and the location of the maximum axial velocity shifts 
toward the centre of the pipe. At F = -1.20 and -1.25, two secondary vortices of 
almost the same intensity but in opposite directions coexist. The effects of the two 
secondary flows on the primary flow neutralize each other, and a w-contour is, in 
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F =  1.0 O ( Q = O )  -1.10 -1.20 

-1.25 -1.30 -1.35 -2.0 
FIGURE 2. Variation of contours of axial velocity (upper-half) and secondary streamline 

(lower-half) with F at KLc = 100 and 1 = 50. 

F =  1.0 -0.70 -0.90 -0.95 -1.01 -1.03 

-1.02 -1.20 -1.30 -1.40 -1.60 -2.0 
FIGURE 3. Variation of contours of axial velocity (upper-half) and secondary streamline 

(lower-half) with F at KLC = 500 and ,I = 50. 

effect, just like that of Poiseuille flow: a flow without body force. As F becomes 
negatively larger ( F  = -1.30, -1.35), the secondary flow vortex, due to the centrifugal 
force, becomes weaker while shifting nearer to the inner bend of the pipe. Finally 
at F = -2.0, it is taken over by the secondary flow due to the Coriolis force. The 
contours at F = 1.0 are a mirror image of those at F = -2.0. Figure 2 gives a detailed 
illustration of the secondary flow reversal: how the secondary flow vortex due to the 
Coriolis force is generated, grows and finally replaces the other secondary flow vortex 
of the opposite direction due to the centrifugal force. 

It is known that the curvature causes the flow on concave surfaces to be destabilized, 
and stationary roll cells, often called Dean vortices, occur as a result of centrifugal 
instability above a certain critical value of the Dean number. The occurrence of 
stationary roll cells in rotating curved pipes makes the flow structure even more 
complex. Figure 3 shows flow patterns for the higher value of KLC = 500, in which 
stationary roll cells due to the centrifugal instability occur near the outer bend when 
F = -1.01 - -1.30. 
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For positive values of F ,  the situation in figure 3 is similar again to flows of larger 
KLc in stationary curved pipes. For F = -0.70 - -0.95, the secondary flow vortex 
due to the Coriolis force grows along the inner wall and advances to the outer wall of 
the curved pipe. In this case of larger KLc, both of the secondary flows are so strong 
that w-contours appear as if they are pulled inward and outward simultaneously. 

As the secondary flow due to the centrifugal force is toward the outer bend on the 
x-axis, it tends to suppress the occurrence of roll cells due to centrifugal instability on 
the wall at 6' = 0". Development of secondary flow due to the Coriolis force nearer 
to the outer bend sets off the instability as a disturbance. The resulting roll cells 
originate near the wall at 6' = O", and the flow is directed towards the inner bend 
on the x-axis ( F  = -1.01). The location of w,,, separates into two locations. The 
streamlines show three vortices: two secondary flows due to the body forces and a roll 
cell. Secondary flow due to the Coriolis force and roll cell are combined because they 
have the same flow direction, while the secondary flow vortex due to the centrifugal 
force is isolated. The flow patterns at F = -1.01 - -1.05 are similar to the patterns 
in figure 11 of Daskopoulos & Lenhoff (1990), shown without physical explanations. 
When F = -1.20 - -1.30, a combined vortex motion of secondary flow due to the 
Coriolis force and the roll cell governs the flow structure in the cross-section of the 
pipe, while secondary flow due to the centrifugal force can barely be recognized in 
the streamline contours. 

As the centrifugal force becomes relatively weaker, roll cells due to centrifugal 
instability do not occur at F = -1.40. The locations of w,,, then degenerate to a 
point, and a weak secondary flow due to the centrifugal force reappears (a similar 
situation to F = -1.30 in figure 2). Situations for F = -1.60 and -2.0 are similar to 
those for F = -1.35 and 2.0 in figure 2. 

When the flow instability due to body forces takes the form of a stationary 
secondary flow pattern, as in the cases of Taylor and BCnard cells (see Drazin & 
Reid 1981) it is called the principle of exchange of stabilities. The appearance of the 
roll cell mentioned above is related to the Dean vortices commonly seen in a two- 
dimensional curved duct or rectangular curved duct above a critical Dean number. 
The Dean vortices in stationary curved circular pipes are not so common, but were 
first demonstrated in computational studies by Dennis & Ng (1982) and Nandakumar 
& Masliyah (1982) as one of the dual solutions of the Navier-Stokes equations. The 
existence of the solution in addition to the usual secondary flow pattern in stationary 
curved pipes was verified by flow visualization experiments (Cheng & Yuen 1984), 
where a four-vortex pattern (secondary flow plus roll cell) emerged on giving an 
artificial disturbance to the flow near the outer bend of the curved pipe. A roll cell 
seems to appear in curved circular pipes only when a disturbance is generated on the 
destabilized outer side of the pipe. 

Next, we will discuss the flow structure for small Rossby number. To understand 
the effect of the Rossby number, the flow structure will be shown when Ro is changed 
successively while keeping KLc and F constant. Figure 4 shows the contours of 
axial velocity and secondary streamfunctions for KLC = 30 and F = 100, where Ro 
is changing in the range of 0.1 - 8 while keeping 1 > 8. The Taylor-Proudman 
effect is clearly recognized at Ro = 0.1; the axial iso-velocity lines are constant 
in the rotational vector direction in the inviscid core of the flow and secondary 
streamlines are symmetrical with respect to the y-axis. The pattern remains similar 
for smaller Ro. The structure at Ro = 8 is the asymptotic for large Ro. Contours for 
Ro = 0.2 - 3 show a transition between the two asymptotic situations for small and 
large Ro. 
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Ro= 0.1 0.2 0.5 0.7 

1 .o 2.0 3.0 8.0 
FIGURE 4. Variation of contours of axial velocity (upper-half) and secondary streamline 

(lower-half) with Ro at KLC = 30 and F = 100. 

We have seen the detailed process of the secondary flow reversal around F m -1, 
where two body forces of opposite direction compete. For estimating the secondary 
flow reversal, Daskopoulos & Lenhoff (1990) gave the different criterion D / T a  m -4. 
In their criterion, Ta varies with effects of both curvature and rotation, as does D as 
mentioned in 93. Therefore, the ratio D / T a  seems to be impossible to understand and 
manage. The reversal should be controlled by the balance between two body forces. 
From figures 2, 3 and 5 shown later, and from the meaning of the dimensionless 
numbers, F m -1 seems to be the obvious criterion. 

4.2. Friction factor 
The friction factor is the most important flow property in engineering applications. 
Extensive and precise measurements on pressure loss were made by Ito et al. (1987, 
1988) for constant KLc and for constant RQ points, the total number of the tabulated 
data being over 550. These data will be used for comparison and validation of the 
present study. 

First, we show the friction factor for A,IRoJ > 8. To have an overall view of 
behaviour of the friction factor for large IRol, figure 5 shows the computed values 
of the Fanning friction-factor ratio f/fo together with the data for constant-KLc 
experiments, where f = 'zw/ipwi in which 'z, is the peripheral average of wall 
friction and f o  = 16/Re is the non-rotating straight pipe value. All curves have their 
minimum around F = -1.0 where secondary flow reversal occurs. Steady solutions 
cannot be obtained for a certain range of F = 1 (the solid lines break there in 
figure 5 )  for KLc = 707 and 1414. The roll cells due to flow instability do not occur 
in the lower two cases, K L c  = 141.4 and 282.8. The computational results agree well 
with the experimental data, including minimum values. A similar comparison for 
constant-& cases also showed good agreement. 

The computed results are shown in figure 6(a,b) for a wide range of KLC while 
keeping F constant for positive and negative rotation. The dotted lines in the figure 
show the friction formula for F = 0, non-rotating curved pipe flow. For positive 
rotation, f-curves increase in almost a parallel manner from the non-rotating flow 
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FIGURE 6. Variation of computed friction factor ratio with the Dean number: ~ , present 
computation (1 = 50); - - - -, curve for F = 0 equation (4.1~). (a) Positive rotation; ( b )  negative 
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FIGURE 7. Comparison of the friction formula ( 4.la,b) with the computed values for negative 
rotation: - - - -, (4.la,b); computed values (1 = 50) 0, F =-0.2; A, -0.5; V, -2; 0, -3; 0, -5; 
0, -10. 

curve as F increases. For negative rotation, f-curves first decrease, taking a minimum 
at F w -1, then increase as F increases negatively. Numerical computations for 
F = -1.0 and -1.5 become unstable for large values of KLc and steady solutions 
cannot be obtained. The curve for F = -2 nearly coincides with that for F = 0 for 
the entire range of KLC, which suggests that the f-curves in figure 6 are approximately 
symmetrical with respect to F = -1.0. 

In the previous paper (Ishigaki 1994), an analogy formula for the friction factor 
common to both fully developed laminar flows in non-rotating curved pipes and in 
rotating straight pipes was given as follows: 

f = 0.0899KL'2(1 + 12.4K-0.701 L ) >  
fo 

(4 .1~)  

for K L  < 3000, and A, Ro > 8. When the right-hand side of (4 .1~)  yields a value below 
1, f / f o  should be set to 1. In the formula K L  represents KLC for non-rotating curved 
pipe flow and K L R  for rotating straight pipe flow. It is the formula for F = 0, that 
has been used in figure 6 as the dotted curve. If KLc is replaced by KLR, it is also an 
asymptotic formula for F = +a. 

Taking it into consideration that the f -curves in figures 5 and 6 are approximately 
symmetrical with respect to F = -1, we try to extend (4 .1~)  to rotating curved 
pipe flow by making the transformations K L  = KLC(F + 1)1/2 for F > -1 and 
K L  = KLc(lFI - 1)1/2 for F < -1. The transformations embody their limiting forms: 
K L  + KLC as F + 0 and K L  + K L R  = Re/lRo11/2 as F + fa. Figure 7 shows that 
computational results, except for those of F = -1 and -1.5, lie on ( 4 . 1 ~ )  for negative 
rotation. A similar comparison for positive rotation showed better agreement. 

The corresponding comparisons of (4. la) with experimental data are shown in 
figures 8(a) and 8(b), which include all the experimental data by Ito et al. (1987, 1988) 
for A,]Rol > 8 except for -0.80 > F > -1.30. If the excluded range of F is taken 
narrower, the scatter of the data abruptly increases. Thus, based on the comparison 
with the experimental data, the applicable range of the transformation is specified as 
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FIGURE 8. Comparison of the friction formula (4.la,b) with experimental data for lRol > 8: - - - -, 
(4.la,b); experimental data by Ito et al. (1987, 1988) 0, i = 26.8; A, 10.0; V, 8.3; 0, 8.25. 
(a )  Positive rotation; (b) negative rotation. 

follows : 
K~ = KLc(F + 1)1/2 for F > -0.80, 
K L  = KLc(lFI - 1)lI2 for F < -1.30. 

(4.1 b)  

The composite parameter K L  can be regarded as a convenient governing parameter 
for the flow. As it is not derived from the basic equations, it is not an exact one but 
of approximate nature. 

Next, we discuss the friction factor for a small value of IRo(, but still A > 8. The 
friction factor increases as Ro becomes smaller. Figure 9 shows computed results for 
lRol = 0.5, together with (4.la,b) and experimental data. Three computed results with 
different flow dimensions but of the same lRol fall onto a single curve, indicating 
that the choice of parameters, as well as K L  as a governing parameter, is consistent 
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FIGURE 9. Friction factor ratio at lRol = 0.5. Computation results: ~ , RO = 0.5, 1 = 20; 
_._._ , Ro = -0.5, 1 = 20; ---..-, Ro = 0.5, 1 = 50 (indistinguishable). Experimental data by 
Ito et al. 0, 0.45 < Ro < 0.55; 0, -0.45 > Ro > -0.55. - - - -, (4.la,b). 

with the dynamical similarity of the flow. The computed results agree well with 
experimental data for lRol w 0.5. 

Computational results for 0.1 < lRol c 8 are approximated well by (4.la,b) multi- 
plied by the following function: 

[ = 1 + 0.047K~'561R~l-0.721. (4 .1~)  

Figure 10 shows the comparison between (4.la,b,c) and the experimental data for 
three regions of (Rot. Figures 8 and 10 contain all the experimental data by Ito 
et al. (1987, 1988) except for -0.8 > F > -1.3. The agreement between the proposed 
semi-empirical formula and the experimental data is very good. The effect of Ro on 
the friction factor can be estimated from (4 .1~)  to be [ = 1.14 for Ro = 1, 1.23 for 
Ro = 0.5 and 1.73 for Ro = 0.1, when K L  = lo3. The effect of Ro on the friction 
factor is smaller than 5% when lRol 2 4, from the condition [ < 1.05. 

4.3. Secondary $ow properties 
Although Us in (3.1) was employed in deriving the similarity parameters, US is in 
fact the secondary velocity scale for stationary curved pipe flow. As the composite 
parameter K L  in ( 4.lb) should have the meaning of the cross-sectional Reynolds 
number, the cross-sectional velocity scale for rotating curved pipe flow may be 
assumed to be K ~ v / d .  This velocity scale contains effects of both curvature and 
rotation. Excluding the singular region of F in (4.1b), this scale should be used for 
normalizing secondary flow properties. 

As an example of a secondary flow property, we will take its intensity. The 
secondary stream function tp takes its extremum at the centre of the secondary flow 
vortices. Figure 11 shows the variation of its absolute maximum, Jtp I m a x ,  with K L  for 
1, lRol > 8, where the dotted line shows that of a non-rotating curved pipe flow 
( F  = 0). The computed curves show quite similar behaviours. The secondary flow 
becomes weaker as lRol decreases (see Ishigaki 1996b). Additional flow properties, 
such as the axial velocity maximum, can be seen in Ishigaki (1993, 1996b). 
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FIGURE 10. Comparison of the correction formula ( 4 . 1 ~ )  with experimental data for three regions 
of IRol: - - - -, (4.la,b,c). (a) 8 > lRol > 4. Experimental data 0, 8 > Ro > 6 ;  A, 6 > Ro > 5; 

Experimental data 0, 4 > Ro > 3; A, 3 > Ro > 2; V, 2 > Ro > 1 ;  0, -4 < Ro < -3; A, 
-3 < Ro < - 2 ;  V, -2 < Ro < -1. (c) 1 > lRol > 0. Experimental data 0, 1 > Ro > 0.5; A, 

V, 5 > RO > 4; 0, -8 < RO < -6;  A, -6 < RO < -5; V, -5 < RO < -4. (b)  4 > J R o ~  > 1. 

0.5 > RO > 0; 0, -1 < RO < -0.5; A, -0.5 < RO < 0. 
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RGURE 11. Variation of stream function extremum lylmax with K L  at large lRol (1, lRol > 8): 
- - - -, F=O; -0-, 10; -&, -0.5; -A-, -2; -0-, -10. 

5. Conclusions 
Fully developed laminar flows in rotating curved pipes have been studied for both 

positive and negative rotations. Similarity considerations revealed that the general 
flow situation was governed by four parameters: the Dean number K L c ,  the body 
force ratio F ,  the curvature parameter 3, and the Rossby number Ro. Computational 
results were given for the case when the effect of 3, on the flow characteristics was 
negligible. Variations of flow structures with the parameters were shown, particularly 
complicated structure with secondary flow reversal around F w -1 being studied in 
detail. Through investigating computational results and experimental data for the 
friction factor, a convenient governing parameter KL was suggested for correlating 
the flow characteristics. By using K L ,  a semi-empirical formula for the friction factor 
was proposed, which showed good agreement with experimental data for a wide range 
of KLc,  F and Ro. The corresponding convective heat transfer problem in rotating 
curved pipes has been studied elsewhere (Ishigaki 1995). 
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